\(\int \frac {a+b \text {arccosh}(c x)}{d+e x^2} \, dx\) [493]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 18, antiderivative size = 501 \[ \int \frac {a+b \text {arccosh}(c x)}{d+e x^2} \, dx=\frac {(a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {(a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}} \]

[Out]

1/2*(a+b*arccosh(c*x))*ln(1-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)-(-c^2*d-e)^(1/2)))/(-d)^(1
/2)/e^(1/2)-1/2*(a+b*arccosh(c*x))*ln(1+(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)-(-c^2*d-e)^(1/
2)))/(-d)^(1/2)/e^(1/2)+1/2*(a+b*arccosh(c*x))*ln(1-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(-d)^(1/2)+(-
c^2*d-e)^(1/2)))/(-d)^(1/2)/e^(1/2)-1/2*(a+b*arccosh(c*x))*ln(1+(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*(
-d)^(1/2)+(-c^2*d-e)^(1/2)))/(-d)^(1/2)/e^(1/2)-1/2*b*polylog(2,-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*
(-d)^(1/2)-(-c^2*d-e)^(1/2)))/(-d)^(1/2)/e^(1/2)+1/2*b*polylog(2,(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c*
(-d)^(1/2)-(-c^2*d-e)^(1/2)))/(-d)^(1/2)/e^(1/2)-1/2*b*polylog(2,-(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c
*(-d)^(1/2)+(-c^2*d-e)^(1/2)))/(-d)^(1/2)/e^(1/2)+1/2*b*polylog(2,(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*e^(1/2)/(c
*(-d)^(1/2)+(-c^2*d-e)^(1/2)))/(-d)^(1/2)/e^(1/2)

Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 501, normalized size of antiderivative = 1.00, number of steps used = 18, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5909, 5962, 5681, 2221, 2317, 2438} \[ \int \frac {a+b \text {arccosh}(c x)}{d+e x^2} \, dx=\frac {(a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {c^2 (-d)-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \text {arccosh}(c x)) \log \left (\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {c^2 (-d)-e}}+1\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {(a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \text {arccosh}(c x)) \log \left (\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {c^2 (-d)-e}+c \sqrt {-d}}+1\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-d c^2-e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-d c^2-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {-d} c+\sqrt {-d c^2-e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{\sqrt {-d} c+\sqrt {-d c^2-e}}\right )}{2 \sqrt {-d} \sqrt {e}} \]

[In]

Int[(a + b*ArcCosh[c*x])/(d + e*x^2),x]

[Out]

((a + b*ArcCosh[c*x])*Log[1 - (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(2*Sqrt[-d]*Sqrt[e]
) - ((a + b*ArcCosh[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(2*Sqrt[-d]*Sqr
t[e]) + ((a + b*ArcCosh[c*x])*Log[1 - (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(2*Sqrt[-d]
*Sqrt[e]) - ((a + b*ArcCosh[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(2*Sqrt
[-d]*Sqrt[e]) - (b*PolyLog[2, -((Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e]))])/(2*Sqrt[-d]*Sqrt
[e]) + (b*PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])])/(2*Sqrt[-d]*Sqrt[e]) - (b*Po
lyLog[2, -((Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e]))])/(2*Sqrt[-d]*Sqrt[e]) + (b*PolyLog[2,
(Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])])/(2*Sqrt[-d]*Sqrt[e])

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 5681

Int[(((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)])/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :
> Simp[-(e + f*x)^(m + 1)/(b*f*(m + 1)), x] + (Int[(e + f*x)^m*(E^(c + d*x)/(a - Rt[a^2 - b^2, 2] + b*E^(c + d
*x))), x] + Int[(e + f*x)^m*(E^(c + d*x)/(a + Rt[a^2 - b^2, 2] + b*E^(c + d*x))), x]) /; FreeQ[{a, b, c, d, e,
 f}, x] && IGtQ[m, 0] && NeQ[a^2 - b^2, 0]

Rule 5909

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
 + b*ArcCosh[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p
] && (p > 0 || IGtQ[n, 0])

Rule 5962

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/((d_.) + (e_.)*(x_)), x_Symbol] :> Subst[Int[(a + b*x)^n*(Sinh[x
]/(c*d + e*Cosh[x])), x], x, ArcCosh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {\sqrt {-d} (a+b \text {arccosh}(c x))}{2 d \left (\sqrt {-d}-\sqrt {e} x\right )}+\frac {\sqrt {-d} (a+b \text {arccosh}(c x))}{2 d \left (\sqrt {-d}+\sqrt {e} x\right )}\right ) \, dx \\ & = -\frac {\int \frac {a+b \text {arccosh}(c x)}{\sqrt {-d}-\sqrt {e} x} \, dx}{2 \sqrt {-d}}-\frac {\int \frac {a+b \text {arccosh}(c x)}{\sqrt {-d}+\sqrt {e} x} \, dx}{2 \sqrt {-d}} \\ & = -\frac {\text {Subst}\left (\int \frac {(a+b x) \sinh (x)}{c \sqrt {-d}-\sqrt {e} \cosh (x)} \, dx,x,\text {arccosh}(c x)\right )}{2 \sqrt {-d}}-\frac {\text {Subst}\left (\int \frac {(a+b x) \sinh (x)}{c \sqrt {-d}+\sqrt {e} \cosh (x)} \, dx,x,\text {arccosh}(c x)\right )}{2 \sqrt {-d}} \\ & = -\frac {\text {Subst}\left (\int \frac {e^x (a+b x)}{c \sqrt {-d}-\sqrt {-c^2 d-e}-\sqrt {e} e^x} \, dx,x,\text {arccosh}(c x)\right )}{2 \sqrt {-d}}-\frac {\text {Subst}\left (\int \frac {e^x (a+b x)}{c \sqrt {-d}+\sqrt {-c^2 d-e}-\sqrt {e} e^x} \, dx,x,\text {arccosh}(c x)\right )}{2 \sqrt {-d}}-\frac {\text {Subst}\left (\int \frac {e^x (a+b x)}{c \sqrt {-d}-\sqrt {-c^2 d-e}+\sqrt {e} e^x} \, dx,x,\text {arccosh}(c x)\right )}{2 \sqrt {-d}}-\frac {\text {Subst}\left (\int \frac {e^x (a+b x)}{c \sqrt {-d}+\sqrt {-c^2 d-e}+\sqrt {e} e^x} \, dx,x,\text {arccosh}(c x)\right )}{2 \sqrt {-d}} \\ & = \frac {(a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {(a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {b \text {Subst}\left (\int \log \left (1-\frac {\sqrt {e} e^x}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right ) \, dx,x,\text {arccosh}(c x)\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {b \text {Subst}\left (\int \log \left (1+\frac {\sqrt {e} e^x}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right ) \, dx,x,\text {arccosh}(c x)\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {b \text {Subst}\left (\int \log \left (1-\frac {\sqrt {e} e^x}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right ) \, dx,x,\text {arccosh}(c x)\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {b \text {Subst}\left (\int \log \left (1+\frac {\sqrt {e} e^x}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right ) \, dx,x,\text {arccosh}(c x)\right )}{2 \sqrt {-d} \sqrt {e}} \\ & = \frac {(a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {(a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {b \text {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {e} x}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{x} \, dx,x,e^{\text {arccosh}(c x)}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {b \text {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {e} x}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{x} \, dx,x,e^{\text {arccosh}(c x)}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {b \text {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {e} x}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{x} \, dx,x,e^{\text {arccosh}(c x)}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {b \text {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {e} x}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{x} \, dx,x,e^{\text {arccosh}(c x)}\right )}{2 \sqrt {-d} \sqrt {e}} \\ & = \frac {(a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {(a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 397, normalized size of antiderivative = 0.79 \[ \int \frac {a+b \text {arccosh}(c x)}{d+e x^2} \, dx=\frac {-\left ((a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )\right )+(a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{-c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )+(a+b \text {arccosh}(c x)) \log \left (1-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )-(a+b \text {arccosh}(c x)) \log \left (1+\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )+b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}-\sqrt {-c^2 d-e}}\right )-b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{-c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )-b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )+b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{\text {arccosh}(c x)}}{c \sqrt {-d}+\sqrt {-c^2 d-e}}\right )}{2 \sqrt {-d} \sqrt {e}} \]

[In]

Integrate[(a + b*ArcCosh[c*x])/(d + e*x^2),x]

[Out]

(-((a + b*ArcCosh[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e])]) + (a + b*ArcCosh[
c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c*x])/(-(c*Sqrt[-d]) + Sqrt[-(c^2*d) - e])] + (a + b*ArcCosh[c*x])*Log[1 - (S
qrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])] - (a + b*ArcCosh[c*x])*Log[1 + (Sqrt[e]*E^ArcCosh[c*
x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e])] + b*PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] - Sqrt[-(c^2*d) - e
])] - b*PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(-(c*Sqrt[-d]) + Sqrt[-(c^2*d) - e])] - b*PolyLog[2, -((Sqrt[e]*E^
ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-(c^2*d) - e]))] + b*PolyLog[2, (Sqrt[e]*E^ArcCosh[c*x])/(c*Sqrt[-d] + Sqrt[-
(c^2*d) - e])])/(2*Sqrt[-d]*Sqrt[e])

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.28 (sec) , antiderivative size = 232, normalized size of antiderivative = 0.46

method result size
parts \(\frac {a \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e}}+\frac {b c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\textit {\_R1} \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} e +2 c^{2} d +e}\right )}{2}-\frac {b c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{2}\) \(232\)
derivativedivides \(\frac {\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e}}+b \,c^{2} \left (\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\textit {\_R1} \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} e +2 c^{2} d +e}\right )}{2}-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{2}\right )}{c}\) \(239\)
default \(\frac {\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e}}+b \,c^{2} \left (\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\textit {\_R1} \left (\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} e +2 c^{2} d +e}\right )}{2}-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (4 c^{2} d +2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\operatorname {arccosh}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -c x -\sqrt {c x -1}\, \sqrt {c x +1}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{2}\right )}{c}\) \(239\)

[In]

int((a+b*arccosh(c*x))/(e*x^2+d),x,method=_RETURNVERBOSE)

[Out]

a/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))+1/2*b*c*sum(_R1/(_R1^2*e+2*c^2*d+e)*(arccosh(c*x)*ln((_R1-c*x-(c*x-1)^(1
/2)*(c*x+1)^(1/2))/_R1)+dilog((_R1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))/_R1)),_R1=RootOf(e*_Z^4+(4*c^2*d+2*e)*_Z^2
+e))-1/2*b*c*sum(1/_R1/(_R1^2*e+2*c^2*d+e)*(arccosh(c*x)*ln((_R1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))/_R1)+dilog((
_R1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))/_R1)),_R1=RootOf(e*_Z^4+(4*c^2*d+2*e)*_Z^2+e))

Fricas [F]

\[ \int \frac {a+b \text {arccosh}(c x)}{d+e x^2} \, dx=\int { \frac {b \operatorname {arcosh}\left (c x\right ) + a}{e x^{2} + d} \,d x } \]

[In]

integrate((a+b*arccosh(c*x))/(e*x^2+d),x, algorithm="fricas")

[Out]

integral((b*arccosh(c*x) + a)/(e*x^2 + d), x)

Sympy [F]

\[ \int \frac {a+b \text {arccosh}(c x)}{d+e x^2} \, dx=\int \frac {a + b \operatorname {acosh}{\left (c x \right )}}{d + e x^{2}}\, dx \]

[In]

integrate((a+b*acosh(c*x))/(e*x**2+d),x)

[Out]

Integral((a + b*acosh(c*x))/(d + e*x**2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \text {arccosh}(c x)}{d+e x^2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a+b*arccosh(c*x))/(e*x^2+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {a+b \text {arccosh}(c x)}{d+e x^2} \, dx=\int { \frac {b \operatorname {arcosh}\left (c x\right ) + a}{e x^{2} + d} \,d x } \]

[In]

integrate((a+b*arccosh(c*x))/(e*x^2+d),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)/(e*x^2 + d), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {arccosh}(c x)}{d+e x^2} \, dx=\int \frac {a+b\,\mathrm {acosh}\left (c\,x\right )}{e\,x^2+d} \,d x \]

[In]

int((a + b*acosh(c*x))/(d + e*x^2),x)

[Out]

int((a + b*acosh(c*x))/(d + e*x^2), x)